扫一扫,微信关注我们
品牌 | Siemens/德国西门子 | 应用领域 | 化工,电子,电气 |
---|
西门子连接电缆6SL3060-4AP00-0AA0
一、 实验目的
熟练使用置位和复位等各条基本指令,通过对工程实例的模拟,熟练地掌握PLC的编程和程序调试。
二、液体混合装置控制的模拟实验面板图:图6-9-1所示
液体混合装置控制面板
上图下框中的V1、V2、V3、M分别接主机的输出点Q0.0、Q0.1、Q0.2、Q0.3;起、停按钮SB1、SB2分别接主机的输入点I0.0、I0.1;液面传感器SL1、SL2、SL3分别接主机的输入点I0.2、I0.3、I0.4。上图中,液面传感器利用钮子开关来模拟,启动、停止用动合按钮来实现,液体A阀门、液体B阀门、混合液阀门的打开与关闭以及搅动电机的运行与停转用发光二极管的点亮与熄灭来模拟。
三、控制要求
由实验面板图可知:本装置为两种液体混合装置,SL1、SL2、SL3为液面传感器,液体A、B阀门与混合液阀门由电磁阀YV1、YV2、YV3控制,M为搅动电机,控制要求如下:
初始状态:装置投入运行时,液体A、B阀门关闭,混合液阀门打开20秒将容器放空后关闭。
启动操作:按下启动按钮SB1,装置就开始按下列约定的规律操作:
液体A阀门打开,液体A流入容器。当液面到达SL2时,SL2接通,关闭液体A阀门,打开液体B阀门。液面到达SL1时,关闭液体B阀门,搅动电机开始搅动。搅动电机工作6秒后停止搅动,混合液体阀门打开,开始放出混合液体。当液面下降到SL3时,SL3由接通变为断开,再过2秒后,容器放空,混合液阀门关闭,开始下一周期。
停止操作:按下停止按钮SB2后,在当前的混合液操作处理完毕后,才停止操作(停在初始状态上)。
四、编制梯形图并写出程序
参考程序 表6-9-1所示
步序 | 指 令 | 步序 | 指 令 |
0 | LD I0.0 | 17 | LD M10.0 |
1 | EU | 18 | S M20.0, 1 |
2 | = M10.0 启动脉冲 | 19 | LD M20.0 |
3 | LD I0.1 | 20 | A T38 |
4 | EU | 21 | O M10.0 |
5 | = M10.1 停止脉冲 | 22 | S Q0.0, 1 液体A阀打开 |
6 | LD I0.2 | 23 | LD M10.3 |
7 | EU | 24 | S Q0.1, 1 液体B阀打开 |
8 | = M10.2 | 25 | LD M10.3 |
9 | LD I0.3 | 26 | O M10.1 |
10 | EU | 27 | R Q0.0, 1 液体A阀关闭 |
11 | = M10.3 | 28 | LD M10.2 |
12 | LDN I0.4 | 29 | S Q0.3, 1 搅动电机工作 |
13 | AN M11.1 | 30 | LD M10.2 |
14 | = M11.0 | 31 | O M10.1 |
15 | LDN I0.4 | 32 | R Q0.1, 1 液体B阀关闭 |
16 | = M11.1 | 33 | LD T37 |
步序 | 指 令 | 步序 | 指 令 |
34 | O M10.1 | 46 | = M11.5 |
35 | R Q0.3, 1 | 47 | LD M11.4 |
36 | LD Q0.3 | 48 | S Q0.2, 1 混合液阀打开 |
37 | TON T37, +60 延时6S | 49 | LD T38 |
38 | LDN Q0.3 | 50 | O M10.1 |
39 | = M12.0 | 51 | R Q0.2, 1 混合液阀关闭 |
40 | LDN Q0.3 | 52 | LD M11.2 |
41 | A M12.0 | 53 | S M20.1, 1 |
42 | AN M11.5 | 54 | LD T38 |
43 | = M11.4 | 55 | R M20.1, 1 |
44 | LDN Q0.3 | 56 | LD M20.1 |
45 | A M12.0 | 57 | TON T38, +20 延时2S |
五、程序设计及工作过程分析
启动操作:按下启动按钮SB1,I0.0的动合触点闭合,M10.0产生启动脉冲,M10.0的动合触点闭合,使Q0.0保持接通,液体A电磁阀YV1打开,液体A流入容器。当液面上升到SL3时,虽然I0.4动合触点接通,但没有引起输出动作。当液面上升到SL2位置时,SL2接通,I0.3的动合触点接通,M10.3产生脉冲,M10.3的动合触点接通一个扫描周期,复位指令R Q0.0使Q0.0线圈断开,YV1电磁阀关闭,液体A停止流入;与此同时,M10.3的动合触点接通一个扫描周期,保持操作指令S Q0.1使Q0.1线圈接通,液体B电磁阀YV2打开,液体B流入。
当液面上升到SL1时,SL1接通,M10.2产生脉冲,M10.2动合触点闭合,使Q0.1线圈断开,YV2关闭,液体B停止注入,M10.2动合触点闭合,Q0.3线圈接通,搅匀电机工作,开始搅动。搅动电机工作时,Q0.3的动合触点闭合,启动定时器T37,过了6秒,T37动合触点闭合,Q0.3线圈断开,电机停止搅动。当搅匀电机由接通变为断开时,使M11.2产生一个扫描周期的脉冲,M11.2的动合触点闭合,Q0.2线圈接通,混合液电磁阀YV3打开,开始放混合液。
液面下降到SL3,液面传感器SL3由接通变为断开,使M11.0动合触点接通一个扫描周期,M20.1线圈接通,T1开始工作,2秒后混合液流完,T1动合触点闭合,Q0.2线圈断开,电磁阀YV3关闭。同时T1的动合触点闭合,Q0.0线圈接通,YV1打开,液体A流入,开始下一循环。
停止操作:按下停止按钮SB2,I0.1的动合触点接通,M10.1产生停止脉冲,使M20.0线圈复位断开,M20.0动合触点断开,在当前的混合操作处理完毕后,使Q0.0不能再接通,即停止操作。
参考梯形图如下所示:
图6-9-2
六、实验设备
1、THSMS-A型、THSMS-B型实验装置或THSMS-1型、THSMS-2型实验箱一台
2、安装了STEP7-Micro/WIN32编程软件的计算机一台
3、PC/PPI编程电缆一根
4、锁紧导线若干
西门子连接电缆6SL3060-4AP00-0AA0
1)PLC梯形图中的某些编程元件沿用了继电器这一名称,如输入继电器、输出继电器、内部辅助继电器等,但是它们不是真实的物理继电器(即硬件继电器),而是在软件中使用的编程元件。每一编程元件与PLC存储器中元件映像寄存器的二个存储单元相对应。以辅助继电器为例,如果该存储单元为0状态,梯形图中对应的编程元件的线圈“断电",其常开触点断开,常闭触点闭合,称该编程元件为0状态,或称该编程元件为OFF(断开)。该存储单元如果为1状态,对应编程元件的线圈“通电",其常开触点接通,常闭触点断开,称该编程元件为l状态,或称该编程元件为ON(接通)。
2)根据梯形图中各触点的状态和逻辑关系,求出与图中各线圈对应的编程元件的ON/OFF状态,称为梯形图的逻辑解算。逻辑解算是按梯形图中从上到下、从左至右的顺序进行的。解算的结果,马上可以被后面的逻辑解算所利用。逻辑解算是根据输入映像寄存器中的值,而不是根据解算瞬时外部输入触点的状态来进行的。
3)梯形图中各编程元件的常开触点和常闭触点均可以无限多次地使用。
4)输入继电器的状态地取决于对应的外部输入电路的通断状态,因此在梯形图中不能出现输入继电器的线圈
PLC硬件系统的简化框图